MIT OpenCourseWare http://ocw.mit.edu

18.01 Single Variable Calculus Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 4 Chain Rule, and Higher Derivatives

Chain Rule

We've got general procedures for differentiating expressions with addition, subtraction, and multiplication. What about composition?

Example 1.
$$y = f(x) = \sin x, x = g(t) = t^2$$
.
So, $y = f(g(t)) = \sin(t^2)$. To find $\frac{dy}{dt}$, write

$$\frac{\Delta y}{\Delta t} = \frac{\Delta y}{\Delta x} \cdot \frac{\Delta x}{\Delta t}$$

As $\Delta t \to 0$, $\Delta x \to 0$ too, because of continuity. So we get:

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt} \leftarrow$$
 The Chain Rule!

In the example, $\frac{dx}{dt} = 2t$ and $\frac{dy}{dx} = \cos x$.

So,
$$\frac{d}{dt} \left(\sin(t^2) \right) = \left(\frac{dy}{dx} \right) \left(\frac{dx}{dt} \right)$$

= $(\cos x)(2t)$
= $(2t) \left(\cos(t^2) \right)$

Another notation for the chain rule

$$\frac{d}{dt}f(g(t)) = f'(g(t))g'(t) \qquad \left(\text{ or } \quad \frac{d}{dx}f(g(x)) = f'(g(x))g'(x) \right)$$

Example 1. (continued) Composition of functions $f(x) = \sin x$ and $g(x) = x^2$

$$\begin{array}{ccccc} (f\circ g)(x) & = & f(g(x)) & = & \sin(x^2) \\ (g\circ f)(x) & = & g(f(x)) & = & \sin^2(x) \\ \text{Note:} & f\circ g & \neq & g\circ f. & \textit{Not Commutative!} \end{array}$$

Lecture 4 Sept. 14, 2006 18.01 Fall 2006

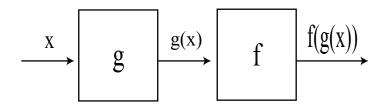


Figure 1: Composition of functions: $f \circ g(x) = f(g(x))$

Example 2.
$$\frac{d}{dx}\cos\left(\frac{1}{x}\right) = ?$$
Let $u = \frac{1}{x}$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

$$\frac{dy}{du} = -\sin(u); \qquad \frac{du}{dx} = -\frac{1}{x^2}$$

$$\frac{dy}{dx} = \frac{\sin(u)}{x^2} = (-\sin u)\left(\frac{-1}{x^2}\right) = \frac{\sin\left(\frac{1}{x}\right)}{x^2}$$

Example 3. $\frac{d}{dx}(x^{-n}) = ?$

There are two ways to proceed. $x^{-n} = \left(\frac{1}{x}\right)^n$, or $x^{-n} = \frac{1}{x^n}$

1.
$$\frac{d}{dx}(x^{-n}) = \frac{d}{dx}\left(\frac{1}{x}\right)^n = n\left(\frac{1}{x}\right)^{n-1}\left(\frac{-1}{x^2}\right) = -nx^{-(n-1)}x^{-2} = -nx^{-n-1}$$

2.
$$\frac{d}{dx}\left(x^{-n}\right) = \frac{d}{dx}\left(\frac{1}{x^n}\right) = nx^{n-1}\left(\frac{-1}{x^{2n}}\right) = -nx^{-n-1} \text{ (Think of } x^n \text{ as } u\text{)}$$

Higher Derivatives

Higher derivatives are derivatives of derivatives. For instance, if g = f', then h = g' is the second derivative of f. We write h = (f')' = f''.

Notations

$$f'(x) \qquad Df \qquad \frac{df}{dx}$$

$$f''(x) \qquad D^2f \qquad \frac{d^2f}{dx^2}$$

$$f'''(x) \qquad D^3f \qquad \frac{d^3f}{dx^3}$$

$$f^{(n)}(x) \qquad D^nf \qquad \frac{d^nf}{dx^n}$$

Higher derivatives are pretty straightforward —- just keep taking the derivative!

Example. $D^n x^n = ?$ Start small and look for a pattern.

$$Dx = 1$$

 $D^2x^2 = D(2x) = 2 \quad (= 1 \cdot 2)$
 $D^3x^3 = D^2(3x^2) = D(6x) = 6 \quad (= 1 \cdot 2 \cdot 3)$
 $D^4x^4 = D^3(4x^3) = D^2(12x^2) = D(24x) = 24 \quad (= 1 \cdot 2 \cdot 3 \cdot 4)$
 $D^nx^n = n! \leftarrow \text{we guess, based on the pattern we're seeing here.}$

The notation n! is called "n factorial" and defined by $n! = n(n-1) \cdots 2 \cdot 1$

Proof by Induction: We've already checked the base case (n = 1).

Induction step: Suppose we know $D^n x^n = n!$ (n^{th} case). Show it holds for the $(n+1)^{st}$ case.

$$D^{n+1}x^{n+1} = D^n (Dx^{n+1}) = D^n ((n+1)x^n) = (n+1)D^n x^n = (n+1)(n!)$$

$$D^{n+1}x^{n+1} = (n+1)!$$

Proved!